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Abstract
This paper will describe simulating metallic grain

growth using our Gradient Weighted Moving Finite
Elements code, GRAIN3D.  We also describe the set of
mesh topology change operations developed to respond to
changes in the physical topology such as the collapse of
grains and to maintain uniform calculational mesh quality.
Validation of the method is demonstrated by comparison
to analytic calculations.  We present results of multigrain
simulations where grain boundaries evolve by mean
curvature motion and include results which incorporate
grain boundary orientation dependence.

Introduction
Metals important to semiconductor manufacture such

as aluminum and copper possess a microstructure
consisting of individual grains.  The atoms in the grains
exist in a crystal lattice, and the lattice orientations of
adjacent grains differ.  The boundary surfaces between
grains are areas of lattice misalignment.  In the simplest
approximation, this excess energy at the boundaries can
be represented as a constant energy density per unit area.
As the metal is heated, the grain boundaries move to
minimize surface energy in such a way that the normal
velocity of a point on the grain boundary is proportional
to the mean curvature at that point [1].  While the mean
curvature model works well for certain classes of
materials, it cannot reproduce the faceting that has been
observed in some metals.  To model the orientation-
dependent grain boundary energy density, we assign
orientations to the individual grains and modify the
equations of boundary motion accordingly.

Summary of Method
We use Gradient-Weighted Moving Finite Elements

[2],[3],[4] to move the network of triangles that
corresponds to the grain interfaces.  In the mean curvature
model of grain growth, the interface surfaces motion is
described by

vn= µK,
where vn is the normal velocity of the interface, K is the
curvature and µ is the mobility which for the simulations
presented here is assumed to be constant.  Following the
derivation given in [5], we obtain a system of 3N ODE’s
of the form:

Where N is the number of interface nodes, x is the 3N
vector containing the coordinates of the interface nodes,
C(x) is a block structured matrix of inner products of
basis functions, and g(x) are inner products involving
surface curvature.  Since K on a piecewise linear manifold
is actually a distribution that is zero in the interior of a
triangle and infinite on the edges, we smooth the manifold
in a small neighborhood of the edges.

Since interface physics supplies only interface
velocities, we extend C and g to allow for moving the
tetrahedra attached to the interfaces.  Additionally, we add
grid viscosity forces to the left hand side to maintain
reasonable timestep in the presence of areas of near
coplanarity of neighboring interface nodes, and we add
quality forces to the right hand side to prevent the
collapse of interface triangles and the inversion of volume
tetrahedra.  The grid forces on the tetrahedra move the
grid by acting to minimize the nonuniformities in grid
velocity and to improve the grid element quality.  These
forces will have the effect of overriding physically
justified node motion if such motion will cause a
tetrahedra to invert.  This effect is acceptable with regard
to accuracy since it removes only a small fraction of
numerical degrees of freedom from the simulation.
Application of the grid operations merge, face swap, and
edge swap remove such problematic tetrahedra and are
discussed in the next section.

Grid Maintenance Operations
A large set of mesh optimization and maintenance

operations is required to allow our simulation to survive
all the transitions of interface geometry and topology that
occur during grain evolution.  A first category of mesh
operations maintains good element quality and requires a
combination of node merging, node smoothing, edge
refinement, and face swapping to keep the simulation
from prematurely terminating.  Interestingly, we have also
found that it is impossible to completely de-couple the
physical motion of the interface triangles from the
conforming tetrahedral mesh that contains them, because
of the inevitable presence of “all-surface'' tetrahedra  (i.e.
tetrahedra all of whose vertices lie on the same grain
boundaries).   These tetrahedra are very flat and have near
zero volume and hence are prone to invert as the interface
deforms.  To prevent element inversion, we have found it
is necessary to add artificial forces to the physically
justified forces on the interfaces.  These artificial forces



keep the simulation “alive” until periodically the worst
offending “all-surface” tetrahedra are removed by
merging their vertices.

A second category of mesh operations captures
changes in interface topology.  We have found that it is
necessary to keep track of the various connected
topological components and determine whether they are
on the verge of disappearing or changing as the
simulation evolves.  For example, for all pairs of grains
that touch each other, we monitor the topological
component consisting of connected interface triangles
between the two grains.  If the total surface area of one
such component is about to go to zero, a physical
topological change is imminent; GRAIN3D detects this
change and responds by performing topological
operations on the computational tetrahedral mesh.
Similar strategies are required to detect other forms of
topological change.

In order to monitor the rate of collapse of the
assembled connected sets of elements, surface triangles,
and interface edges, we maintain a nodal velocity history.
The combination of historical rate of collapse and volume
collapse indicates that action must be taken to respond to
the imminent topological change.  We identify the
neighborhood surrounding the collapsing feature and
refine this neighborhood to provide an epsilon thick
buffer region.  The encroaching materials are examined to
identify a ‘winner’, and the collapsing feature and its
associated epsilon neighborhood are assigned the
winner’s material.  Soon after the material reassignment,
the forces on the material interfaces will effectively
straighten the interfaces.

Periodically during the grain evolution, the Los
Alamos Grid Toolbox, LaGriT [6], is invoked to improve
mesh quality.  LaGriT provides a mesh optimization
operation, “massage”, that combines the “merge”,
“refine” and “recon” basic operations.  Massage accepts a
refinement length which causes edges longer than the
specified length to be bisected, a merge length which
causes edges shorter than the specified length to be
merged away and a damage tolerance with forbids any
operations that would change the shape of material
interface by more than the specified damage.  All
operations are performed in a way that guarantees that the
mesh connectivity will not become corrupted and that
ensures the integrity of grain interfaces.

Spherically Symmetric Collapse
The collapse of a spherical grain is solvable

analytically assuming that the normal collapse velocity is
equal to the curvature.  The rate of change of surface area
is:

dr/dt = K = -2/r
dA/dt = d(4πr2)/dt = -16π

We ran the simulation on 42-node, 162-node and 642-
node representations of a sphere.  In each case the nodes

were initially equally spaced at a radius of 0.5.  This
spacing creates a polygonal representation of the sphere
that will have a smaller surface area than a true sphere
with the same radius.  Figure 1 shows the close agreement
of calculation to simulation for the 642-node sphere.
 Near the terminal time (0.0625) the tetrahedra inside the
sphere have collapsed to such a small size that the



tetrahedral quality force dominates and effectively stops
the collapse.

Figure 1.  Results for 642 –node sphere run.

Mean Curvature Example
In this section we show how GRAIN3D evolves a 3D

microstructure, successfully maintaining mesh quality and
performing necessary topological changes during the
course of the calculation.  The initial microstructure was
obtained via Monte Carlo evolution of a discrete effective
spin (Potts) model on the elements of the unstructured
tetrahedral grid generated by LaGriT.  The Potts model is
know to be the discrete analog of curvature driven
motion.  The initial configuration consisted of 140 grains
arrayed in a flat plate.  Figure 3, 4 and 5 show three
snapshots in the time sequence in which grains shrink and
disappear.  Note that the grid is maintained throughout the
simulation, keeping the number and spacing of the nodes
approximately constant.  Although only the surface grid is
displayed, the quality of the mesh is maintained in the
volume as well.

Figure 2.  Early timestep in the 140 grain simulation



Figure 3. 140 grain growth simulation at t=78.

Figure 4. 140 grain growth simulation at t=300.

Grain Boundary Orientation Example
In order to model the faceting behavior found in grain

growth in metals such as copper, we have modified the
grain growth model to incorporate orientation-dependent
grain boundary energy.  We use the standard coincident
site lattice (CSL) notation to relate the twist, tilt and
symmetry parameters to the grain boundary energy.  We
have fit the parameters to the microscopic calculations for
fcc symmetric copper found in Reference [7].  Again the
initial microstructure was derived via Monte Carlo
evolution of a discrete effective classical spin (Potts)
model.  The discrete code was modified to allow the Potts
spins to live on the nodes rather than on the elements.
The initial random node spins were annealed until only
five grains remained.  Then each grain was assigned an
orientation.  To remove any artifacts that may have arisen
as a result of the discrete methods a few timesteps of
mean curvature moving finite elements were executed to
reach the microstructure shown in figure 5.  We now ran

both the mean curvature model and the orientation-
dependent model.  The results are displayed in figures 6
and 7.  Note that the general motion of the interfaces is
similar, but that the orientation-dependent model shows
steps and facets and grain boundary angles that are
forbidden by the mean curvature model.

Figure 5.  Initial microstructure of a copper line.

Figure 6.  Microstructure of a copper line at t=4, grain
interfaces moved using mean curvature.

Figure 7.  Microstructure of a copper line at t=4, grain
interfaces moved using an orientation-dependent model.

Future Plans
Although 3D grain growth data are not readily

available, we plan on validating our model against
existing 2D data.  We also are writing GRAIN2D based
also on Gradient-Weighted Moving Finite Elements.  We
will compare GRAIN2D results against data and against
existing codes.   At the same time we are incorporating
more features into GRAIN3D including modeling thermal
effects and the effects of stress.
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